All Issue

2024 Vol.4, Issue 1 Preview Page
30 November 2024. pp. 58-68
Abstract
References
1

Cho, S.H. and Kim, I., "Hypersonic Shockwave Robustness in Infrared Plasmonic Doped Metal Oxide Nanocrystal Cubes: Implications for High-Speed Ballistics Transport Applications", ACS Appl. Nano Mater., Vol. 5, No. 12, pp. 17487-17495, 2022.

10.1021/acsanm.2c04198
2

Surendhar, S., Sivaprakash, P., Infanta, J.J., Jagadeesh, R., Dhas, S.M.B., Kim, I. and Arumugam, S., "Enhancing the efficiency of gas sensing on perovskite BaTiO3 nanoparticles using dynamic shock wave flow environment", Ceram. Int., Vol. 50, No. 13, pp. 23710-23720, 2024.

10.1016/j.ceramint.2024.04.094
3

Sakthivel, S., Paramasivam, S., Velusamy, P., Jerries Infanta, J.A.D., Ragavendran, V., Mayandi, J., Arumugam, S. and Kim, I., "Experimental investigation of structural, morphological, and optical characteristics of SrTiO3 nanoparticles using a shock tube for photocatalytic applications", Z. Phys. Chem., Vol. 238, pp. 1863-1885, 2024.

10.1515/zpch-2023-0486
4

Bincy, F.I.M., Oviya, S., Kumar, R.S., Kannappan, P., Arumugam, S., Kim, I. and Britto Dhas, S.M., "Investigation of bismuth selenide's structural stability and tunable bandgap under exposure to acoustic shock waves for solar cell and aerospace applications", Mech. Adv. Mater. Struct, pp. 1-15, 2024.

10.1080/15376494.2024.2413188
5

Yao, Y., Huang, Z., Xie, P., Wu, L., Ma, L., Li, T., Pang, Z., Jiao, M., Liang, Z., Gao, J. and He, Y., "High temperature shockwave stabilized single atoms", Nat. Nanotechnol, Vol. 14, No. 9, pp. 851-857, 2019.

10.1038/s41565-019-0518-731406363
6

Renald, J.T. and Somasundaram, P., "Microstructural evaluation and study of shock wave as an energetic source for synthesis of nanomaterials", Polym. Bull., Vol. 76, pp. 4841-4858, 2019.

10.1007/s00289-018-2625-2
7

Kireitseu, M., Hui, D. and Tomlinson, G., "Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material", J.Comp B: Engineering, Vol. 39, No. 1, pp. 128-138, 2008.

10.1016/j.compositesb.2007.03.004
8

Aravindhan, K., Sridhar, J., Suresh, A., Vignesh, C., Renald, C.T., Sundararaj, K., Abraham, L. and Pichumani, M., "Shock wave as a source of energy to influence on nanomaterials", 2017 First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), IEEE, pp. 1-3, March 2017.

10.1109/ICRAAE.2017.8297233
9

Sivakumar, A., Ramya, S., Dhas, S.S.J., Almansour, A.I., Kumar, R.S., Arumugam, N., Murugesan, M. and Dhas, S.M.B., "Assessment of crystallographic and electronic phase stability of shock wave loaded cubic cerium oxide nanoparticles", Ceram. Int., Vol. 48, No. 2, pp. 1963-1968, 2022.

10.1016/j.ceramint.2021.09.281
10

Kalaiarasi, S., Sivakumar, A., Dhas, S.M.B. and Jose, M., "Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube", Mater. Lett., Vol. 219, pp. 72-75, 2018.

10.1016/j.matlet.2018.02.064
11

Sivakumar, A., Soundarya, S., Jude Dhas, S.S., Bharathi, K.K. and Dhas, S.M.B., "Shock wave driven solid state phase transformation of Co3O4 to CoO nanoparticles", J. Phys. Chem. C, Vol. 124, No. 19, pp. 10755-10763, 2020.

10.1021/acs.jpcc.0c02146
12

Sivakumar, A., Dhas, S.S.J., Almansour, A.I., Kumar, R.S., Arumugam, N., Perumal, K. and Dhas, S.M.B., "Sustainability of the crystallographic phase stability of the barium carbonate nanoparticles at dynamic shocked conditions", Appl. Phys. A, Vol. 127, pp. 1-7, 2021.

10.1007/s00339-021-05059-7
13

Zhu, Y.Q., Sekine, T., Brigatti, K.S., Firth, S., Tenne, R., Rosentsveig, R., Kroto, H.W. and Walton, D.R., "Shock-wave resistance of WS2 nanotubes", J. Am. Chem. Soc., Vol. 125, No. 5, pp. 1329-1333, 2003.

10.1021/ja021208i12553835
14

Arumugam, S. and Kim, I., "Investigation of energy storage applications on nickel fluoride nanomaterials under shock wave flow environments", Malaysian NANO-An International Journal, Vol. 3, No. 1, pp. 31-43, 2023.

10.22452/mnij.vol3no1.3
15

Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V.C.S.J., Cho, S.J. and Morkoç, A.H., "A comprehensive review of ZnO materials and devices", J. Appl. Phys, Vol. 98, No. 4, 2005.

10.1063/1.1992666
16

Klingshirn, C., "ZnO: From basics towards applications", Phys. Status Solidi B, Vol. 244, No. 9, pp. 3027-3073, 2007.

10.1002/pssb.200743072
17

Bhandari, K.P., Sapkota, D.R., Jamarkattel, M.K., Stillion, Q. and Collins, R.W., "Zinc Oxide Nanoparticles-Solution-Based Synthesis and Characterizations", Nanomaterials, Vol. 13, No. 11, p. 1795, 2023.

10.3390/nano1311179537299698PMC10255554
18

Karunakaran, C., Jayabharathi, J., Venkatesh Perumal, M., Thanikachalam, V. and Kumar Thakur, P., "Electronic properties of phenanthrimidazoles as hole transport materials in organic light emitting devices and in photoelectron transfer to ZnO nanoparticles", J. Phys. Org. Chem., Vol. 26, No. 5, pp. 386-406, 2013.

10.1002/poc.3100
19

Thabit, H.A. and Kabir, N.A., "The study of X-ray effect on structural, morphology and optical properties of ZnO nanopowder", Nucl. Instrum. Methods Phys. Res, Vol. 436, pp. 278-284, 2018.

10.1016/j.nimb.2018.10.012
20

Markushev, V.M., Ryzhkov, M.V., Briskina, C.M., Caob, H., Zadorozhnaya, L.A., Li, L.E., Gevargizovc, E.I., Demianets, L.N., "UV radiation of powdered ZnO pumped by nanosecond pulses", Proc. SPIE, Vol. 59, p. 240, 2005.

10.1117/12.615885
21

Sivakumar, A., Dhas, S.S.J., Almansour, A.I., Kumar, R.S., Arumugam, N. and Dhas, S.M.B., "Spectroscopic assessment of shock wave resistance on ZnO nanorods for aerospace applications", J. Inorg. Organomet. Polym. Mater, Vol. 31, pp. 2553-2559, 2021.

10.1007/s10904-020-01848-4
22

Sivakumar, A., Victor, C., Nayak, M.M. and Dhas, S.M.B., "Structural, optical, and morphological stability of ZnO nano rods under shock wave loading conditions", Mater. Res. Express, Vol. 6, No. 4, p. 045031, 2019.

10.1088/2053-1591/aafae6
23

Devika, M., Koteeswara Reddy, N., Jayaram, V., Reddy, K.P.J., "Sustainability of aligned ZnO nanorods under dynamic shock-waves", Adv. Mater. Lett., Vol. 8, pp. 398-403, 2017.

10.5185/amlett.2017.6890
24

Moon, Y.K., Moon, D.Y., Lee, S. and Park, J.W., "Enhancement of ZnO thin film transistor performance by high-dose proton irradiationNucl. Instrum", Methods Phys. Res. B, Vol. 268, No. 16, pp. 2522-2526, 2010.

10.1016/j.nimb.2010.05.050
25

Reddy, N.K., Jayaram, V., Arunan, E., Kwon, Y.B., Moon, W.J. and Reddy, K.P.J., "Investigations on high enthalpy shock wave exposed graphitic carbon nanoparticles", Diam. Relat. Mater., Vol. 35, pp. 53-57, 2013.

10.1016/j.diamond.2013.03.005
26

Sivakumar, A., Balachandar, S. and Dhas, S.M.B., "Measurement of "shock wave parameters" in a novel table-top shock tube using microphones", Hum. Factors Mech. Eng. Def. Saf., Vol. 4, pp. 1-6, 2020.

10.1007/s41314-019-0033-5
27

Luo, J., Zhang, X., Chen, R., Wang, X., Zhu, J. and Wang, X., "Preparation, characterization and properties of ZnO nanomaterials", IOP Conference Series: Materials Science and Engineering, IOP Publishing, Vol. 207, No. 1, p. 012010, June 2017.

10.1088/1757-899X/207/1/012010
28

Santika, R. and Rohmawati, L., "Analysis of crystalline phase and functional groups of zno from pineapple peel extract", Indonesian Physical Review, Vol. 5, No. 3, pp. 148-156, 2022.

10.29303/ipr.v5i3.160
29

Sivakumar, A., Shailaja, P., Dhas, S.S.J., Sivaprakash, P., Almansour, A.I., Kumar, R.S., Arumugam, N., Arumugam, S., Chakraborty, S. and Dhas, S.M.B., "Dynamic shock wave-induced switchable phase transition of magnesium sulfate heptahydrate", Cryst. Growth Des., Vol. 21, No. 9, pp. 5050-5057, 2021.

10.1021/acs.cgd.1c00476
30

Sivakumar, A., Dhas, S.S.J., Dai, L., Pushpanathan, V., Sivaprakash, P., Kumar, R.S., Almansour, A.I., Kim, I., Johnson, J. and Dhas, S.M.B., "Diffraction and microscopic studies on lithium sulfate doped l-Threonine under dynamic shock wave exposed conditions", Physica B Condens. Matter, Vol. 665, p. 415065, 2023.

10.1016/j.physb.2023.415065
31

Thadhani, N.N., Graham, R.A., Royal, T., Dunbar, E., Anderson, M.U. and Holman, G.T., "Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: time-resolved pressure measurements and materials analysis", J. Appl. Phys., Vol. 82, No. 3, pp. 1113-1128, 1997.

10.1063/1.365878
32

Jagadeesh, R., Rajkumar, S., Arumugam, S. and Kannan, M., "Structure, morphology, and magnetic properties of Fe microparticles as impact on shock waves", J. Magn. Magn. Mater., Vol. 587, p. 171303, 2023.

10.1016/j.jmmm.2023.171303
33

Alves, M., Cavaleiro, A.J., Ferreira, E.C., Amaral, A.L., Mota, M., da Motta, M., Vivier, H. and Pons, M.N., "Characterisation by image analysis of anaerobic sludge under shock conditions", Water sci technol, Vol. 41, No. 12, pp. 207-214, 2000.

10.2166/wst.2000.0273
Information
  • Publisher :The Korean Society of Propulsion Engineers
  • Publisher(Ko) :한국추진공학회
  • Journal Title :Journal of Propulsion and Energy
  • Journal Title(Ko) :한국추진공학회 영문지
  • Volume : 4
  • No :1
  • Pages :58-68
  • Received Date : 2024-09-25
  • Revised Date : 2024-11-14
  • Accepted Date : 2024-11-25