All Issue

2024 Vol.4, Issue 1 Preview Page
30 November 2024. pp. 42-57
Abstract
References
1

Sutton, G.P. and Biblarz, O., Rocket propulsion elements, John Wiley & Sons, 2011.

2

Sutton, G.P., History of liquid propellant rocket engines, AIAA, 2006.

10.2514/4.868870
3

Tani, H., Daimon, Y., Sasaki, M. and Matsuura, Y., "Atomization and hypergolic reactions of impinging streams of monomethylhydrazine and dinitrogen tetroxide", Combustion and Flame, Vol. 185, pp. 142-151, 2017. https://doi.org/10.1016/j.combustflame.2017.07.005

10.1016/j.combustflame.2017.07.005
4

Tani, H., Terashima, H., Daimon, Y., Koshi, M. and Kurose, R., "A numerical study on hypergolic combustion of hydrazine sprays in nitrogen tetroxide streams", Combustion Science and Technology, Vol. 190, No. 3, pp. 516-534, 2018. https://doi.org/10.1080/00102202.2017.1402010

10.1080/00102202.2017.1402010
5

Ministry of Environment, Methylhydrazine, Toxic Substances Characteristics, Toxicity, and Management Information Summary, 97-1-84, K-REACH, 2018. https://kreach.me.go.kr/repwrt/common/filePathDown.do?filePath=/KCIP_DATA/NCIS_DATA/shared/mttrdata/03/toxic/97-1-84.pdf

6

Barsan, M.E. (2019). Methylhydrazine, NIOSH Pocket Guide to Chemical Hazards. NIOSH. https://www.cdc.gov/niosh/npg /npgd0419.html

7

Arch Chemicals, Inc., Monomethylhydrazine Material Safety Data Sheet, 2003. https://www.abdurrahmanince.net/355/60-34-4.pdf

8

Ministry of Employment and Labor, Exposure Limits for Chemical Substances and Physical Agents, [Appendix 1] Exposure Limits for Chemical Substances, 2020-48, 2020. https://www.law.go.kr/LSW/flDownload.do?flSeq=55904849&bylClsCd=200201

9

Barsan, M.E., Nitrogen Dioxide, NIOSH Pocket Guide to Chemical Hazards, NIOSH, 2019. https://www.cdc.gov/niosh/npg/npgd0454.html

10

Praxair Technology Inc., Dinitrogen Tetroxide, Praxair Material Safety Data Sheet, P-4633-E, 2007. https://www.linde.tw/-/media/corporate/praxair-taiwan/documents/sds/nitrogen-dioxide-no2-and-n2o4-safety-data-sheet-sds-p4633.pdf

11

National Institute of Food and Drug Safety Evaluation, Nitrogen dioxide Tox-info sheet, 10102-44-0, 2022. https://www.nifds.go.kr/toxinfo/tcd/info/tcdDetailPop.do?toxicCode=T1600231081267

12

Wright, A.C., Nitric Acid/Nitrogen Tetroxide Oxidizers, AFRPL-TR-76-76, USAF, 1997. https://apps.dtic.mil/sti/tr/pdf/ADA036741.pdf

13

Park, S., Kang, H., Park, Y. and Lee, J., "A review of the technical development on green hypergolic propellant", Journal of the Korean Society of Propulsion Engineers, Vol. 24, No. 4, pp. 79-88, 2020. https://doi.org/10.6108/KSPE.2020.24.4.079

10.6108/KSPE.2020.24.4.079
14

Kim, C., Kang, H., Lee, K. and Lee, J., "Ignition Characteristic of Low-toxic Hypergolic Propellant According to Fuel Properties", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 52, No. 2, pp. 131-137, 2024. https://doi.org/10.5139/JKSAS.2024.52.2.131

10.5139/JKSAS.2024.52.2.131
15

Kang, H., Lee, K., Kim, C. and Lee, J., "A Review of the Technical Development on Ionic Liquids for Hypergolic Propellants", Journal of the Korean Society of Propulsion Engineers, Vol. 26, No. 6, pp. 74-85, 2022. https://doi.org/10.6108/KSPE.2022.26.6.074

10.6108/KSPE.2022.26.6.074
16

Kang, H. and Kwon, S., "Green hypergolic combination: Diethylenetriamine-based fuel and hydrogen peroxide", Acta Astronautica, Vol. 137, pp. 25-30, 2017. https://doi.org/10.1016/j.actaastro.2017.04.009

10.1016/j.actaastro.2017.04.009
17

Bhosale, V.K., Jeong, J., Choi, J., Churchill, D.G., Lee, Y. and Kwon, S., "Additive-promoted hypergolic ignition of ionic liquid with hydrogen peroxide", Combustion and Flame, Vol. 214, pp. 426-436, 2020. https://doi.org/10.1016/j.combustflame.2020.01.013

10.1016/j.combustflame.2020.01.013
18

Guseinov, S.L., Fedorov, S.G., Kosykh, V.A. and Storozhenko, P.A, "Hypergolic propellants based on hydrogen peroxide and organic compounds: historical aspect and current state", Russian Chemical Bulletin, Vol. 67, pp. 1943-1954, 2018. https://doi.org/10.1007/s11172-018-2314-1

10.1007/s11172-018-2314-1
19

Davis, S.M. and Yilmaz, N., "Advances in hypergolic propellants: Ignition, hydrazine, and hydrogen peroxide research", Advances in Aerospace Engineering, Vol. 2014, No. 1, p. 729313, 2014. https://doi.org/10.1155/2014/729313

10.1155/2014/729313
20

Jin, Y., Zhang, W., Zhou, Z., Liu, T., Xia, H., Huang, S. and Zhang, Q., "Recent advances in hypergolic ionic liquids with broad potential for propellant applications", FirePhysChem, Vol. 2, No. 3, pp. 236-252, 2022. https://doi.org/10.1016/j.fpc.2022.04.001

10.1016/j.fpc.2022.04.001
21

Kim, H.I., Seo, J., Roh, T.S. and Lee, H.J., "Analysis of the Propulsion System for the Reusable Unmanned Spacecraft X-37B", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 52, No. 5, pp. 389-400, 2024. https://doi.org/10.5139/JKSAS.2024.52.5.389

10.5139/JKSAS.2024.52.5.389
22

Won, S., Yoon, H., Lee, C. and Jeon, H., "Case Study and Implications of Oversees Lunar Lander Propulsion System", Proceeding of The Korean Society of Propulsion Engineers Spring Conference, pp. 543-548, 2022.

23

Seedhouse, E., SpaceX: Starship to Mars-The First 20 Years, Springer Nature, 2022.

10.1007/978-3-030-99181-4
24

Seedhouse, E. and Seedhouse, E., SpaceX's Dragon: America's Next Generation Spacecraft, Springer Nature, 2016.

10.1007/978-3-319-21515-0PMC5369958
26

Pourpoint, T.L., Hypergolic ignition of a catalytically promoted fuel with rocket grade hydrogen peroxide (Doctoral dissertation, Purdue University), 2005.

27

Daimon, W., Gotoh, Y. and Kimura, I., "Mechanism of explosion induced by contact of hypergolic liquids", Journal of Propulsion and Power, Vol. 7, No. 6, pp. 946-952, 1991. https://doi.org/10.2514/3.51323

10.2514/3.51323
28

Dambach, E.M., Ignition of hypergolic propellants (Doctoral dissertation, Purdue University), 2010.

10.2514/6.2010-6984
29

Kubal, T., Dambach, E., Son, S., Anderson, W. and Pourpoint, T., "Aspects of monomethylhydrazine and red fuming nitric acid ignition", 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 6902, 2010. https://doi.org/10.2514/6.2010-6902

10.2514/6.2010-6902PMC2854683
30

Forness, J.M., Phenomena resulting from hypergolic contact (Master's thesis, Purdue University), 2013.

31

Forness, J., Pourpoint, T.L., Heister, S.D., "Experimental study of impingement and reaction of hypergolic droplets", 49th AIAA/ASME/SAE/ASEE Joint PropulsionConference, p. 3772, 2013. https://doi.org/10.2514/6.2013-3772

10.2514/6.2013-3772PMC3593018
32

Dambach, E.M., Rankin, B.A., Pourpoint, T.L. and Heister, S.D., "Temperature estimations in the near-flame field resulting from hypergolic ignition using thin filament pyrometry", Combustion science and technology, Vol. 184, No. 2, pp. 205-223, 2012. https://doi.org/10.1080/00102202.2011.627403

10.1080/00102202.2011.627403
33

Heister, S.D., Anderson, W.E., Corvalan, C.M., Campanella, O.H., Lucht, R.P, Pourpoint, T.L., Sojka, P.E., Son, S.F., Schmidt, D.P. and Meyer, T.R., Spray and Combustion of Gelled Hypergolic Propellants, W911NF-08-0171, MURI Research Grant, 2014. https://apps.dtic.mil/sti/citations/ADA623637

34

Black, A., Liquid and Gas Phase Chemistry of Hypergolic Reactions between MMH and NTO or RFNA (Master's thesis, Purdue University), 2017.

35

Black, A.T., Drolet, M.P. and Pourpoint, T.L., "Early Liquid and Gas Phase Hypergolic Reactions between Monomethylhydrazine and Nitrogen Tetroxide or Red Fuming Nitric Acid", Combustion Science and Technology, Vol. 191, No. 11, pp. 1990-2005, 2019. https://doi.org/10.1080/00102202.2018.1540471

10.1080/00102202.2018.1540471
36

Beaver, R.A., White, C., McNaughton, S.T., Gabl, J. and Pourpoint, T.L., "The Effect of Nitric Oxide on the Ignition Delay of Mixed Oxides of Nitrogen with Monomethylhydrazine", AIAA SCITECH 2023 Forum, p. 1475, 2023. https://doi.org/10.2514/6.2023-1475

10.2514/6.2023-1475
37

Dennis, J.D., Investigation of condensed and early stage gas phase hypergolic reactions (Doctoral dissertation, Purdue University), 2014.

38

Farmer, M.J., A study of hypergolic propellants reaction rates using the chemical delay time (Master's thesis, The University of Alabama in Huntsville), 1997.

39

Mays, L.O., Analysis of chemical delay time in hypergolic fuel and fuel mixtures (Master's thesis, The University of Alabama in Huntsville), 1998.

40

Hampton, C., Ramesh, K. and Smith, J., "Importance of chemical delay time in understanding hypergolic ignition behaviors", 41st Aerospace Sciences Meeting and Exhibit, p. 1359, 2003. https://doi.org/10.2514/6.2003-1359

10.2514/6.2003-1359
41

Farmer, M.J., Mays, L.O., Hampton, C.S. and Smith Jr, J.E., "Reaction rates for hypergolic propellants using chemical delay times", Journal of Propulsion and Power, Vol. 20, No. 2, pp. 372-376, 2004. https://doi.org/10.2514/1.9262

10.2514/1.9262
42

Dasarathy, R., Kinetic studies using chemical delay times of anhydrous hydrazine and other hypergolic fuels (Master's thesis, The University of Alabama in Huntsville), 2006.

43

Brown, C., Ignition in rapid acidification of Hydrazine, Unsymmetrical Dimethylhydrazine and Aerozine (Master's thesis, The University of Alabama in Huntsville), 2010.

44

Haines, K., Kinetic analysis of the hypergolic reactivity of dimethylpiperazines with red fuming nitric acid (Master's thesis, The University of Alabama in Huntsville), 2017.

45

Mays, L.O., Farmer, M.J. and Smith Jr, J.E., "A Laser DiagnosticTechnique to Measure Chemical DelayTime in Hypergolic Combustion", Combustion science and technology, Vol. 134, No. 1-6, pp. 127-138, 1998. https://doi.org/10.1080/00102209808924129

10.1080/00102209808924129
46

Wang, S., Experimental studies on condensed-phase ineractions of hypergolic propellants (Doctoral dissertation, The Pennsylvania State University), 2013.

47

Wang, S.Q. and Thynell, S.T., "An experimental study on the hypergolic interaction between monomethylhydrazine and nitric acid", Combustion and Flame, Vol. 159, No. 1, pp. 438-447, 2012. https://doi.org/10.1016/j.combustflame.2011.07.009

10.1016/j.combustflame.2011.07.009
48

Kim, K.S., Kim, Y., Jung, S., Jeong, J. and Kwon, S., "Research Studies of Impingement Characteristics for Hypergolic Propellant", Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 5, pp. 90-100, 2019. https://doi.org/10.6108/KSPE.2019.23.5.090

10.6108/KSPE.2019.23.5.090
49

Sardeshmukh, S., Comprehensive computational modeling of hypergolic propellant ignition (Doctoral dissertation, Purdue University), 2013.

50

Elverum Jr, G.W. and Staudhammer, P., The effect of rapid liquid-phase reactions on injector design and combustion in rocket motors, No. JPL Progress Report 30-4, 1959. https://ntrs.nasa.gov/citations/20150018952

51

Johnson, B.H., An experimental investigation of the effects of combustion on the mixing of highly reactive liquid propellants, No. NASA-CR-64616, 1965. https://ntrs.nasa.gov/api/citations/19650023538/downloads/19650023538.pdf

52

Evans, D.D., Riebling, R.W. and Stanford, H.B., The effect of injector-element scale on the mixing and combustion of nitrogen tetroxide-hydrazine propellants, No. JPL-TR-32-1178, 1967. https://ntrs.nasa.gov/api/citations/19680002968/downloads/19680002968.pdf

53

Clayton, R.M., The influence of several near-wall injection conditions on the combustion performance of a liquid rocket engine, No. JPL-TR-32-1283, 1968. https://ntrs.nasa.gov/api/citations/19680025781/downloads/19680025781.pdf

54

Breen, B.P. and Lawyer, B.R., Hypergolic stream impingement phenomena nitrogen tetroxide/hydrazine, No. NASA-CR-72444, 1968. https://ntrs.nasa.gov/api/citations/19680028359/downloads/19680028359.pdf

55

Breen, B.P., Lawver, B.R., Mills, T.R. and Tkachenko, E.A., Transients influencing rocket engine ignition and popping Interim report, No. SN-95E, 1969. https://ntrs.nasa.gov/api/citations/19690026155/downloads/19690026155.pdf

56

Houseman, J., "Optimum mixing of hypergolic propellants in an unlike doublet injector element", AIAA Journal, Vol. 8, No. 3, pp. 597-599, 1970. https://doi.org/10.2514/3.5724

10.2514/3.5724
57

Dennis, J., Son, S. and Pourpoint, T., "Critical ignition criteria for monomethylhydrazine and red fuming nitric acid in an impinging jet apparatus", 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 4325, 2012. https://doi.org/10.2514/6.2012-4325

10.2514/6.2012-4325
58

Dennis, J.D., Willits, J.D. and Pourpoint, T.L., "Performance of neat and gelled monomethylhydrazine and red fuming nitric acid in an unlike-doublet combustor", Combustion Science and Technology, Vol. 190, No. 7, pp. 1141-1157, 2018. https://doi.org/10.1080/00102202.2018.1428571

10.1080/00102202.2018.1428571
59

Dennis, J.D., Son, S.F. and Pourpoint, T.L., "Critical Ignition Criteria for Monomethylhydrazine and Red Fuming Nitric Acid", Journal of Propulsion and Power, Vol. 31, No. 4, pp. 1184-1192, 2015. https://doi.org/10.2514/1.B35541

10.2514/1.B35541
60

Yuan, T., Chen, C. and Huang, B., "The Comparison of the Hot-Fire and Cold-Flow Observations of NTO/MMH Impinging Combustion", 45th AIAA Aerospace Sciences Meeting and Exhibit, p. 781, 2007. https://doi.org/10.2514/6.2007-781

10.2514/6.2007-781
61

Yuan, T., Chen, C., Huang, B., Tang, M. and Chen, Y.T., "The impinging-type injector design of MMH/NTO liquid rocket engine", 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 3745, 2012. https://doi.org/10.2514/6.2012-3745

10.2514/6.2012-3745
62

Allison, C.B., Hybrid and decomposition combustion of the hydrazine fuels, No. NASA-CR-72977, 1971. https://ntrs.nasa.gov/api/citations/19710026876/downloads/19710026876.pdf

63

Solomon, Y., Gelled MMH hypergolic droplet investigation (Master's thesis, Purdue University), 2012.

10.2514/6.2011-5705
64

Lastufka, A., Solomon, Y. and Anderson, W., "Effect of diluent on gelled MMH ignition and dual flame behavior", 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 5951, 2011. https://doi.org/10.2514/6.2011-5951

10.2514/6.2011-5951
65

Feng, S., He, B., He, H., Su, L., Hou, Z., Nie, W. and Guo, X., "Experimental studies the burning process of gelled unsymmetrical dimethylhydrazine droplets under oxidant convective conditions", Fuel, Vol. 111, pp. 367-373, 2013. https://doi.org/10.1016/j.fuel.2013.03.071

10.1016/j.fuel.2013.03.071
66

He, B., Nie, W., Feng, S., Su, L. and Zhuang, F., "Effects of NTO oxidizer temperature and pressure on hypergolic ignition delay and life time of UDMH organic gel droplet", Propellants, Explosives, Pyrotechnics, Vol. 38, No. 5, pp. 665-684, 2013. https://doi.org/10.1002/prep.201200160

10.1002/prep.201200160
67

Hayashi, J., Tani, H., Kanno, N., Sato, D., Daimon, Y., Akamatsu, F., Gabl, J., Black, A. and Pourpoint, T., "Multilayer reaction zones of a counterflow flame of gaseous Nitrogen Tetroxide and a liquid Monomethylhydrazine pool", Combustion and Flame, Vol. 201, pp. 244-251, 2019. https://doi.org/10.1016/j.combustflame.2018.12.030

10.1016/j.combustflame.2018.12.030
68

Mayer, S.W., Taylor, D. and Schieler, L., Preignition products from storable propellants at simulated high-altitude conditions, Air Force Report No. SAMSO-TR-68-6, 1967. https://www.tib.eu/de/suchen/id/ntis%3Acfe4c1e4a8eae90ba05306df7b134d5f90becc04/Preignition-Products-from-Storable-Propellants

69

Saad, M.A., Detweiler, M.B. and Sweeney, M.A., "Analysis of reaction products of nitrogen tetroxide with hydrazines under nonignition conditions", AIAA Journal, Vol. 10, No. 8, pp. 1073-1078, 1972. https://doi.org/10.2514/3.50297

10.2514/3.50297
70

Ministry of Employment and Labor, Enforcement Rule of the Infectious Disease Prevention and Control Act, [Appendix 4-2] Standards for Installation and Operation of Negative Pressure Isolation Rooms, 799, 2020. https://www.law.go.kr/LSW/flDownload.do?flSeq=55904849&bylClsC

71

Nufer, B., Hypergolic propellants: the handling hazards and lessons learned from use, No. KSC-2010-045R, 2010. https://ntrs.nasa.gov/citations/20100042352

72

Nufer, B., A summary of NASA and USAF hypergolic propellant related spills and fires, KSC-2010-045, 2010. https://doi.org/10.25 14/6.2010-1994

10.2514/6.2010-1994
73

Baker, D. and Rathgeber, K., Hypergol Systems: Design, Buildup, and Operation, NSTC Course 055, 2006. https://ntrs.nasa.gov/citations/20070006357

74

Uney, P.E. and Fester, D.A., Material Compatability with Space Storable Propellants, NASA-CR-127057, 1972. https://ntrs.nasa.gov/citations/19720019028

75

Carter, G.T., Liquid propellants safety handbook, No. NASA-TM-X-56611, 1965. https://ntrs.nasa.gov/api/citations/19650018358/downloads/19650018358.pdf

76

Korea Occupational Safety & Health Agency, Guidelines on the Selection, Use, and Management of Respiratory Protective Equipment, KOSHA GUIDE H-82-2020, 2020. https://kosha.or.kr/extappKosha/kosha/guidance/fileDownload.do?sfhlhTchnlgyManualNo=H-82-2020&fileOrdrNo=11

77

NASA, Safety Standard for Explosives, Propellants, and Pyrotechnics, NASA-STD-8719.12A, 2021. https://standards.nasa.gov/sites/default/files/standards/NASA/A/2/nasa-std-871912a_with_change_2.pdf

78

Korea Occupational Safety & Health Agency, Technical Guidelines on the Safe Use and Handling of Flammable Liquids, KOSHA GUIDE P-75-2011, 2011. https://kosha.or.kr/extappKosha/kosha/guidance/fileDownload.do?sfhlhTchnlgyManualNo=P-75-2011&fileOrdrNo=3

79

Korea Occupational Safety & Health Agency, Technical Guidelines on the Prevention of Electrostatic Hazards, KOSHA GUIDE E-89-2017, 2017. https://kosha.or.kr/extappKosha/kosha/guidance/fileDownload.do?sfhlhTchnlgyManualNo=E-89-2017&fileOrdrNo=3

80

Cortopassi, A. and Boyer, J.E., "Hypergolic ignition testing of solid fuel additives with MON-3 oxidizer", 53rd AIAA/SAE/ASEE Joint Propulsion Conference, p. 5050, 2017. https://doi.org/10.2514/6.2017-5050

10.2514/6.2017-5050
81

Hypergolic Fuels - The Chemistry of a Rocket Launch, The Royal Institution, 2015. https://www.youtube.com/watch?v=IcjYdEW_HLQ

Information
  • Publisher :The Korean Society of Propulsion Engineers
  • Publisher(Ko) :한국추진공학회
  • Journal Title :Journal of Propulsion and Energy
  • Journal Title(Ko) :한국추진공학회 영문지
  • Volume : 4
  • No :1
  • Pages :42-57
  • Received Date : 2024-09-19
  • Revised Date : 2024-11-15
  • Accepted Date : 2024-11-15