Tani, H., Daimon, Y., Sasaki, M. and Matsuura, Y., "Atomization and hypergolic reactions of impinging streams of monomethylhydrazine and dinitrogen tetroxide", Combustion and Flame, Vol. 185, pp. 142-151, 2017. https://doi.org/10.1016/j.combustflame.2017.07.005
10.1016/j.combustflame.2017.07.005Tani, H., Terashima, H., Daimon, Y., Koshi, M. and Kurose, R., "A numerical study on hypergolic combustion of hydrazine sprays in nitrogen tetroxide streams", Combustion Science and Technology, Vol. 190, No. 3, pp. 516-534, 2018. https://doi.org/10.1080/00102202.2017.1402010
10.1080/00102202.2017.1402010Ministry of Environment, Methylhydrazine, Toxic Substances Characteristics, Toxicity, and Management Information Summary, 97-1-84, K-REACH, 2018. https://kreach.me.go.kr/repwrt/common/filePathDown.do?filePath=/KCIP_DATA/NCIS_DATA/shared/mttrdata/03/toxic/97-1-84.pdf
Barsan, M.E. (2019). Methylhydrazine, NIOSH Pocket Guide to Chemical Hazards. NIOSH. https://www.cdc.gov/niosh/npg /npgd0419.html
Arch Chemicals, Inc., Monomethylhydrazine Material Safety Data Sheet, 2003. https://www.abdurrahmanince.net/355/60-34-4.pdf
Ministry of Employment and Labor, Exposure Limits for Chemical Substances and Physical Agents, [Appendix 1] Exposure Limits for Chemical Substances, 2020-48, 2020. https://www.law.go.kr/LSW/flDownload.do?flSeq=55904849&bylClsCd=200201
Barsan, M.E., Nitrogen Dioxide, NIOSH Pocket Guide to Chemical Hazards, NIOSH, 2019. https://www.cdc.gov/niosh/npg/npgd0454.html
Praxair Technology Inc., Dinitrogen Tetroxide, Praxair Material Safety Data Sheet, P-4633-E, 2007. https://www.linde.tw/-/media/corporate/praxair-taiwan/documents/sds/nitrogen-dioxide-no2-and-n2o4-safety-data-sheet-sds-p4633.pdf
National Institute of Food and Drug Safety Evaluation, Nitrogen dioxide Tox-info sheet, 10102-44-0, 2022. https://www.nifds.go.kr/toxinfo/tcd/info/tcdDetailPop.do?toxicCode=T1600231081267
Wright, A.C., Nitric Acid/Nitrogen Tetroxide Oxidizers, AFRPL-TR-76-76, USAF, 1997. https://apps.dtic.mil/sti/tr/pdf/ADA036741.pdf
Park, S., Kang, H., Park, Y. and Lee, J., "A review of the technical development on green hypergolic propellant", Journal of the Korean Society of Propulsion Engineers, Vol. 24, No. 4, pp. 79-88, 2020. https://doi.org/10.6108/KSPE.2020.24.4.079
10.6108/KSPE.2020.24.4.079Kim, C., Kang, H., Lee, K. and Lee, J., "Ignition Characteristic of Low-toxic Hypergolic Propellant According to Fuel Properties", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 52, No. 2, pp. 131-137, 2024. https://doi.org/10.5139/JKSAS.2024.52.2.131
10.5139/JKSAS.2024.52.2.131Kang, H., Lee, K., Kim, C. and Lee, J., "A Review of the Technical Development on Ionic Liquids for Hypergolic Propellants", Journal of the Korean Society of Propulsion Engineers, Vol. 26, No. 6, pp. 74-85, 2022. https://doi.org/10.6108/KSPE.2022.26.6.074
10.6108/KSPE.2022.26.6.074Kang, H. and Kwon, S., "Green hypergolic combination: Diethylenetriamine-based fuel and hydrogen peroxide", Acta Astronautica, Vol. 137, pp. 25-30, 2017. https://doi.org/10.1016/j.actaastro.2017.04.009
10.1016/j.actaastro.2017.04.009Bhosale, V.K., Jeong, J., Choi, J., Churchill, D.G., Lee, Y. and Kwon, S., "Additive-promoted hypergolic ignition of ionic liquid with hydrogen peroxide", Combustion and Flame, Vol. 214, pp. 426-436, 2020. https://doi.org/10.1016/j.combustflame.2020.01.013
10.1016/j.combustflame.2020.01.013Guseinov, S.L., Fedorov, S.G., Kosykh, V.A. and Storozhenko, P.A, "Hypergolic propellants based on hydrogen peroxide and organic compounds: historical aspect and current state", Russian Chemical Bulletin, Vol. 67, pp. 1943-1954, 2018. https://doi.org/10.1007/s11172-018-2314-1
10.1007/s11172-018-2314-1Davis, S.M. and Yilmaz, N., "Advances in hypergolic propellants: Ignition, hydrazine, and hydrogen peroxide research", Advances in Aerospace Engineering, Vol. 2014, No. 1, p. 729313, 2014. https://doi.org/10.1155/2014/729313
10.1155/2014/729313Jin, Y., Zhang, W., Zhou, Z., Liu, T., Xia, H., Huang, S. and Zhang, Q., "Recent advances in hypergolic ionic liquids with broad potential for propellant applications", FirePhysChem, Vol. 2, No. 3, pp. 236-252, 2022. https://doi.org/10.1016/j.fpc.2022.04.001
10.1016/j.fpc.2022.04.001Kim, H.I., Seo, J., Roh, T.S. and Lee, H.J., "Analysis of the Propulsion System for the Reusable Unmanned Spacecraft X-37B", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 52, No. 5, pp. 389-400, 2024. https://doi.org/10.5139/JKSAS.2024.52.5.389
10.5139/JKSAS.2024.52.5.389Won, S., Yoon, H., Lee, C. and Jeon, H., "Case Study and Implications of Oversees Lunar Lander Propulsion System", Proceeding of The Korean Society of Propulsion Engineers Spring Conference, pp. 543-548, 2022.
Seedhouse, E., SpaceX: Starship to Mars-The First 20 Years, Springer Nature, 2022.
10.1007/978-3-030-99181-4Seedhouse, E. and Seedhouse, E., SpaceX's Dragon: America's Next Generation Spacecraft, Springer Nature, 2016.
10.1007/978-3-319-21515-0PMC5369958Ministry of Science and ICT, The Fourth Space Development Basic Plan, 2022. https://doc.msit.go.kr/SynapDocViewServer/viewer/doc.html?key=3d01348ee7d44d2d97fb3750a4102d45&convType=html&convLocale=ko_KR&contextPath=/SynapDocViewServer/
Pourpoint, T.L., Hypergolic ignition of a catalytically promoted fuel with rocket grade hydrogen peroxide (Doctoral dissertation, Purdue University), 2005.
Daimon, W., Gotoh, Y. and Kimura, I., "Mechanism of explosion induced by contact of hypergolic liquids", Journal of Propulsion and Power, Vol. 7, No. 6, pp. 946-952, 1991. https://doi.org/10.2514/3.51323
10.2514/3.51323Dambach, E.M., Ignition of hypergolic propellants (Doctoral dissertation, Purdue University), 2010.
10.2514/6.2010-6984Kubal, T., Dambach, E., Son, S., Anderson, W. and Pourpoint, T., "Aspects of monomethylhydrazine and red fuming nitric acid ignition", 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 6902, 2010. https://doi.org/10.2514/6.2010-6902
10.2514/6.2010-6902PMC2854683Forness, J.M., Phenomena resulting from hypergolic contact (Master's thesis, Purdue University), 2013.
Forness, J., Pourpoint, T.L., Heister, S.D., "Experimental study of impingement and reaction of hypergolic droplets", 49th AIAA/ASME/SAE/ASEE Joint PropulsionConference, p. 3772, 2013. https://doi.org/10.2514/6.2013-3772
10.2514/6.2013-3772PMC3593018Dambach, E.M., Rankin, B.A., Pourpoint, T.L. and Heister, S.D., "Temperature estimations in the near-flame field resulting from hypergolic ignition using thin filament pyrometry", Combustion science and technology, Vol. 184, No. 2, pp. 205-223, 2012. https://doi.org/10.1080/00102202.2011.627403
10.1080/00102202.2011.627403Heister, S.D., Anderson, W.E., Corvalan, C.M., Campanella, O.H., Lucht, R.P, Pourpoint, T.L., Sojka, P.E., Son, S.F., Schmidt, D.P. and Meyer, T.R., Spray and Combustion of Gelled Hypergolic Propellants, W911NF-08-0171, MURI Research Grant, 2014. https://apps.dtic.mil/sti/citations/ADA623637
Black, A., Liquid and Gas Phase Chemistry of Hypergolic Reactions between MMH and NTO or RFNA (Master's thesis, Purdue University), 2017.
Black, A.T., Drolet, M.P. and Pourpoint, T.L., "Early Liquid and Gas Phase Hypergolic Reactions between Monomethylhydrazine and Nitrogen Tetroxide or Red Fuming Nitric Acid", Combustion Science and Technology, Vol. 191, No. 11, pp. 1990-2005, 2019. https://doi.org/10.1080/00102202.2018.1540471
10.1080/00102202.2018.1540471Beaver, R.A., White, C., McNaughton, S.T., Gabl, J. and Pourpoint, T.L., "The Effect of Nitric Oxide on the Ignition Delay of Mixed Oxides of Nitrogen with Monomethylhydrazine", AIAA SCITECH 2023 Forum, p. 1475, 2023. https://doi.org/10.2514/6.2023-1475
10.2514/6.2023-1475Dennis, J.D., Investigation of condensed and early stage gas phase hypergolic reactions (Doctoral dissertation, Purdue University), 2014.
Farmer, M.J., A study of hypergolic propellants reaction rates using the chemical delay time (Master's thesis, The University of Alabama in Huntsville), 1997.
Mays, L.O., Analysis of chemical delay time in hypergolic fuel and fuel mixtures (Master's thesis, The University of Alabama in Huntsville), 1998.
Hampton, C., Ramesh, K. and Smith, J., "Importance of chemical delay time in understanding hypergolic ignition behaviors", 41st Aerospace Sciences Meeting and Exhibit, p. 1359, 2003. https://doi.org/10.2514/6.2003-1359
10.2514/6.2003-1359Farmer, M.J., Mays, L.O., Hampton, C.S. and Smith Jr, J.E., "Reaction rates for hypergolic propellants using chemical delay times", Journal of Propulsion and Power, Vol. 20, No. 2, pp. 372-376, 2004. https://doi.org/10.2514/1.9262
10.2514/1.9262Dasarathy, R., Kinetic studies using chemical delay times of anhydrous hydrazine and other hypergolic fuels (Master's thesis, The University of Alabama in Huntsville), 2006.
Brown, C., Ignition in rapid acidification of Hydrazine, Unsymmetrical Dimethylhydrazine and Aerozine (Master's thesis, The University of Alabama in Huntsville), 2010.
Haines, K., Kinetic analysis of the hypergolic reactivity of dimethylpiperazines with red fuming nitric acid (Master's thesis, The University of Alabama in Huntsville), 2017.
Mays, L.O., Farmer, M.J. and Smith Jr, J.E., "A Laser DiagnosticTechnique to Measure Chemical DelayTime in Hypergolic Combustion", Combustion science and technology, Vol. 134, No. 1-6, pp. 127-138, 1998. https://doi.org/10.1080/00102209808924129
10.1080/00102209808924129Wang, S., Experimental studies on condensed-phase ineractions of hypergolic propellants (Doctoral dissertation, The Pennsylvania State University), 2013.
Wang, S.Q. and Thynell, S.T., "An experimental study on the hypergolic interaction between monomethylhydrazine and nitric acid", Combustion and Flame, Vol. 159, No. 1, pp. 438-447, 2012. https://doi.org/10.1016/j.combustflame.2011.07.009
10.1016/j.combustflame.2011.07.009Kim, K.S., Kim, Y., Jung, S., Jeong, J. and Kwon, S., "Research Studies of Impingement Characteristics for Hypergolic Propellant", Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 5, pp. 90-100, 2019. https://doi.org/10.6108/KSPE.2019.23.5.090
10.6108/KSPE.2019.23.5.090Sardeshmukh, S., Comprehensive computational modeling of hypergolic propellant ignition (Doctoral dissertation, Purdue University), 2013.
Elverum Jr, G.W. and Staudhammer, P., The effect of rapid liquid-phase reactions on injector design and combustion in rocket motors, No. JPL Progress Report 30-4, 1959. https://ntrs.nasa.gov/citations/20150018952
Johnson, B.H., An experimental investigation of the effects of combustion on the mixing of highly reactive liquid propellants, No. NASA-CR-64616, 1965. https://ntrs.nasa.gov/api/citations/19650023538/downloads/19650023538.pdf
Evans, D.D., Riebling, R.W. and Stanford, H.B., The effect of injector-element scale on the mixing and combustion of nitrogen tetroxide-hydrazine propellants, No. JPL-TR-32-1178, 1967. https://ntrs.nasa.gov/api/citations/19680002968/downloads/19680002968.pdf
Clayton, R.M., The influence of several near-wall injection conditions on the combustion performance of a liquid rocket engine, No. JPL-TR-32-1283, 1968. https://ntrs.nasa.gov/api/citations/19680025781/downloads/19680025781.pdf
Breen, B.P. and Lawyer, B.R., Hypergolic stream impingement phenomena nitrogen tetroxide/hydrazine, No. NASA-CR-72444, 1968. https://ntrs.nasa.gov/api/citations/19680028359/downloads/19680028359.pdf
Breen, B.P., Lawver, B.R., Mills, T.R. and Tkachenko, E.A., Transients influencing rocket engine ignition and popping Interim report, No. SN-95E, 1969. https://ntrs.nasa.gov/api/citations/19690026155/downloads/19690026155.pdf
Houseman, J., "Optimum mixing of hypergolic propellants in an unlike doublet injector element", AIAA Journal, Vol. 8, No. 3, pp. 597-599, 1970. https://doi.org/10.2514/3.5724
10.2514/3.5724Dennis, J., Son, S. and Pourpoint, T., "Critical ignition criteria for monomethylhydrazine and red fuming nitric acid in an impinging jet apparatus", 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 4325, 2012. https://doi.org/10.2514/6.2012-4325
10.2514/6.2012-4325Dennis, J.D., Willits, J.D. and Pourpoint, T.L., "Performance of neat and gelled monomethylhydrazine and red fuming nitric acid in an unlike-doublet combustor", Combustion Science and Technology, Vol. 190, No. 7, pp. 1141-1157, 2018. https://doi.org/10.1080/00102202.2018.1428571
10.1080/00102202.2018.1428571Dennis, J.D., Son, S.F. and Pourpoint, T.L., "Critical Ignition Criteria for Monomethylhydrazine and Red Fuming Nitric Acid", Journal of Propulsion and Power, Vol. 31, No. 4, pp. 1184-1192, 2015. https://doi.org/10.2514/1.B35541
10.2514/1.B35541Yuan, T., Chen, C. and Huang, B., "The Comparison of the Hot-Fire and Cold-Flow Observations of NTO/MMH Impinging Combustion", 45th AIAA Aerospace Sciences Meeting and Exhibit, p. 781, 2007. https://doi.org/10.2514/6.2007-781
10.2514/6.2007-781Yuan, T., Chen, C., Huang, B., Tang, M. and Chen, Y.T., "The impinging-type injector design of MMH/NTO liquid rocket engine", 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 3745, 2012. https://doi.org/10.2514/6.2012-3745
10.2514/6.2012-3745Allison, C.B., Hybrid and decomposition combustion of the hydrazine fuels, No. NASA-CR-72977, 1971. https://ntrs.nasa.gov/api/citations/19710026876/downloads/19710026876.pdf
Solomon, Y., Gelled MMH hypergolic droplet investigation (Master's thesis, Purdue University), 2012.
10.2514/6.2011-5705Lastufka, A., Solomon, Y. and Anderson, W., "Effect of diluent on gelled MMH ignition and dual flame behavior", 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 5951, 2011. https://doi.org/10.2514/6.2011-5951
10.2514/6.2011-5951Feng, S., He, B., He, H., Su, L., Hou, Z., Nie, W. and Guo, X., "Experimental studies the burning process of gelled unsymmetrical dimethylhydrazine droplets under oxidant convective conditions", Fuel, Vol. 111, pp. 367-373, 2013. https://doi.org/10.1016/j.fuel.2013.03.071
10.1016/j.fuel.2013.03.071He, B., Nie, W., Feng, S., Su, L. and Zhuang, F., "Effects of NTO oxidizer temperature and pressure on hypergolic ignition delay and life time of UDMH organic gel droplet", Propellants, Explosives, Pyrotechnics, Vol. 38, No. 5, pp. 665-684, 2013. https://doi.org/10.1002/prep.201200160
10.1002/prep.201200160Hayashi, J., Tani, H., Kanno, N., Sato, D., Daimon, Y., Akamatsu, F., Gabl, J., Black, A. and Pourpoint, T., "Multilayer reaction zones of a counterflow flame of gaseous Nitrogen Tetroxide and a liquid Monomethylhydrazine pool", Combustion and Flame, Vol. 201, pp. 244-251, 2019. https://doi.org/10.1016/j.combustflame.2018.12.030
10.1016/j.combustflame.2018.12.030Mayer, S.W., Taylor, D. and Schieler, L., Preignition products from storable propellants at simulated high-altitude conditions, Air Force Report No. SAMSO-TR-68-6, 1967. https://www.tib.eu/de/suchen/id/ntis%3Acfe4c1e4a8eae90ba05306df7b134d5f90becc04/Preignition-Products-from-Storable-Propellants
Saad, M.A., Detweiler, M.B. and Sweeney, M.A., "Analysis of reaction products of nitrogen tetroxide with hydrazines under nonignition conditions", AIAA Journal, Vol. 10, No. 8, pp. 1073-1078, 1972. https://doi.org/10.2514/3.50297
10.2514/3.50297Ministry of Employment and Labor, Enforcement Rule of the Infectious Disease Prevention and Control Act, [Appendix 4-2] Standards for Installation and Operation of Negative Pressure Isolation Rooms, 799, 2020. https://www.law.go.kr/LSW/flDownload.do?flSeq=55904849&bylClsC
Nufer, B., Hypergolic propellants: the handling hazards and lessons learned from use, No. KSC-2010-045R, 2010. https://ntrs.nasa.gov/citations/20100042352
Nufer, B., A summary of NASA and USAF hypergolic propellant related spills and fires, KSC-2010-045, 2010. https://doi.org/10.25 14/6.2010-1994
10.2514/6.2010-1994Baker, D. and Rathgeber, K., Hypergol Systems: Design, Buildup, and Operation, NSTC Course 055, 2006. https://ntrs.nasa.gov/citations/20070006357
Uney, P.E. and Fester, D.A., Material Compatability with Space Storable Propellants, NASA-CR-127057, 1972. https://ntrs.nasa.gov/citations/19720019028
Carter, G.T., Liquid propellants safety handbook, No. NASA-TM-X-56611, 1965. https://ntrs.nasa.gov/api/citations/19650018358/downloads/19650018358.pdf
Korea Occupational Safety & Health Agency, Guidelines on the Selection, Use, and Management of Respiratory Protective Equipment, KOSHA GUIDE H-82-2020, 2020. https://kosha.or.kr/extappKosha/kosha/guidance/fileDownload.do?sfhlhTchnlgyManualNo=H-82-2020&fileOrdrNo=11
NASA, Safety Standard for Explosives, Propellants, and Pyrotechnics, NASA-STD-8719.12A, 2021. https://standards.nasa.gov/sites/default/files/standards/NASA/A/2/nasa-std-871912a_with_change_2.pdf
Korea Occupational Safety & Health Agency, Technical Guidelines on the Safe Use and Handling of Flammable Liquids, KOSHA GUIDE P-75-2011, 2011. https://kosha.or.kr/extappKosha/kosha/guidance/fileDownload.do?sfhlhTchnlgyManualNo=P-75-2011&fileOrdrNo=3
Korea Occupational Safety & Health Agency, Technical Guidelines on the Prevention of Electrostatic Hazards, KOSHA GUIDE E-89-2017, 2017. https://kosha.or.kr/extappKosha/kosha/guidance/fileDownload.do?sfhlhTchnlgyManualNo=E-89-2017&fileOrdrNo=3
Cortopassi, A. and Boyer, J.E., "Hypergolic ignition testing of solid fuel additives with MON-3 oxidizer", 53rd AIAA/SAE/ASEE Joint Propulsion Conference, p. 5050, 2017. https://doi.org/10.2514/6.2017-5050
10.2514/6.2017-5050Hypergolic Fuels - The Chemistry of a Rocket Launch, The Royal Institution, 2015. https://www.youtube.com/watch?v=IcjYdEW_HLQ
- Publisher :The Korean Society of Propulsion Engineers
- Publisher(Ko) :한국추진공학회
- Journal Title :Journal of Propulsion and Energy
- Journal Title(Ko) :한국추진공학회 영문지
- Volume : 4
- No :1
- Pages :42-57
- Received Date : 2024-09-19
- Revised Date : 2024-11-15
- Accepted Date : 2024-11-15
- DOI :https://doi.org/10.6108/JPNE.2024.4.1.042